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Sources: Wikipedia.org; NASA.gov; Hubblesite.org; et al.; H. Lamb (1932)

Context
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“When I die and go to Heaven there are two matters 
on which I hope enlightenment. One is quantum 

electrodynamics and the other is turbulence. 
About the former, I am really rather optimistic.”
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The History of CFD

History of CFD in Van Leer’s View
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The History of CFD

Emergence of CFD
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Some significant developments in the ‘60s:
• birth of commercial jet transport – B707 & DC-8
• intense interest in transonic drag rise phenomena
• lack of analytical treatment of transonic aerodynamics
• birth of supercomputers – CDC6600 

DC-8

Sonic line

Shock wave

Boundary layer

M < 1 M > 1

Transonic Flow CDC6600

• In 1960 the underlying principles of fluid dynamics and the formulation of the 
governing equations (potential flow, Euler, RANS) were well established

• The new element was the emergence of powerful enough computers to make 
numerical solution possible – to carry this out required new algorithms

• The emergence of CFD in the 1965–2005 period depended on a combination of 
advances in computer power and algorithms.
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The History of CFD

Multi-Disciplinary Nature of CFD
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The History of CFD

Hierarchy of Governing Equations
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The History of CFD

50 Years of CFD
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• 1960–1970: Early Developments
Riemann-based schemes for gas dynamics (Godunov), 2nd-order dissipative schemes for 
hyperbolic equations (Lax-Wendroff), efficient explicit methods for Navier-Stokes 
(MacCormack), panel method (Hess-Smith)

• 1970–1980: Potential Flow Equations
type-dependent differencing (Murman-Cole), complex characteristics (Garabedian), 
rotated difference (Jameson), multigrids (Brandt), complete airplane solution 
(Glowinsky)

• 1980–1990: Euler and Navier-Stokes Equations
oscillation control via limiters (Boris-Book), high-order Godunov scheme (van Leer), 
flux splitting (Steger-Warming), shock capturing via controlled diffusion (Jameson-
Schmit-Turkel), approximate Riemann solver (Roe), total variation diminishing 
(Harten), multigrids (Jameson, Ni), solution of complete airplane (Jameson-Baker-
Weatherill)

• 1990–2000: Aerodynamic Shape Optimization
adjoint based control theory

• 2000–2010: Discontinuous Finite Element Methods
Discontinuous Galerkin, Spectral Difference, Flux Reconstruction, etc.
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The History of CFD

Advances in Computer Power
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1970 CDC6600 1 Megaflops 106

1980 Cray 1
Vector Computer 100 Megaflops 108

1994 IBM SP2
Parallel Computer 10 Gigaflops 1010

2007 Linux Clusters 100 Teraflops 1014

2007
(affordable) Box Cluster in my house

Four 3 GHz dual core CPUs (24 Gigaflops peak)
$10,000

2.5 Gigaflops 2.5×109

2009 HP Pavilion Quadcore Notebook
$1,099 1 Gigaflops 109

2011 MacBook Pro Quadcore Laptop
$2,099 2.5 Gigaflops 2.5×109
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Author’s Experience

CFD Code Development
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• 1970–1980: Potential Flows
solution of inverse problem by conformal mapping (SYN1), solution of 2D potential 
flow by conformal mapping (FLO1), 2D transonic potential flow using rotated difference 
scheme (FLO6), first transonic potential flow solution for a swept wing (FLO22), 3D 
potential flow in general grid with trilinear isoparametric elements (FLO27), multigrid 
solution of 2D transonic potential flow (FLO36)

• 1980–1990: Euler & Navier-Stokes Equations
solution of 3D Euler (FLO57), multigrid solution of 3D Euler (FLO67), multigrid 
solution of 2D Euler (FLO82), first solution of Euler equations for a complete aircraf 
with tetrahedral meshes (FLOPLANE), cell-vertex and cell-centered schemes for 3D 
Navier-Stokes (FLO107)

• 1990–2000: Aerodynamic Shape Optimization
airfoil design via control theory using 2D Euler (SYN83), wing design using 3D Euler 
(SYN88), airfoil design using 2D Navier-Stokes (SYN103), wing design using 3D 
Navier-Stokes (SYN107), aerodynamic design of complete aircraft with tetrahedral 
mesh (SYNPLANE), viscous flow solution on arbitrary polyhedral meshes (FLO3XX)

• 2000–2010: High-order Methods for Navier-Stokes Equations
high-order discontinuous finite element methods for unsteady compressible Navier-
Stokes equations on unstructured meshes (Spectral Difference Method, Energy Stable 
Flux Reconstruction Method)
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Author’s Experience

Wing Optimization Using SYN107
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State of the Art Wing Design 
Process in 2 Stages, starting 
from Garabedian-Korn Airfoil and 
NASA Common Research Model
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Usage of CFD – Boeing's Experience

Impact of CFD on Configuration Lines & Wind Tunnel Testing
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Usage of CFD – Boeing's Experience

Impact of CFD on B737-300 Program
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Usage of CFD – Boeing's Experience

Computational Methods at Boeing
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TRANAIR:

• Full Potential with directly coupled Boundary Layer
• Cartesian solution adaptive grid
• Drela lag-dissipation turbulence model
• Multi-point design/optimization

Navier-Stokes Codes:

• CFL3D – Structured Multiblock Grid
• TLNS3D – Structured Multiblock Grid, Thin Layer
• OVERFLOW – Overset Grid

N-S Turbulence Models:

• S-A Spalart-Allmaras
• Menter’s k-ω SST
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Usage of CFD – Boeing's Experience

CFD Contributions to B787
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Usage of CFD – Airbus' Experience

CFD Development for Aircraft Design
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Usage of CFD – Airbus' Experience

Block-Structured RANS Capability: FLOWer
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Usage of CFD – Airbus' Experience

Unstructured RANS Capability: TAU
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Usage of CFD – Airbus' Experience

Numerical Flow Simulation
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Usage of CFD – Airbus' Experience

CFD Contribution to A380
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Current Status & Future Trends

The Current Status of CFD
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• Worldwide commercial and government codes are based on 
algorithms developed in the ‘80s and ‘90s

• These codes can handle complex geometry but are generally 
limited to 2nd order accuracy

• They cannot handle turbulence without modeling

• Unsteady simulations are very expensive, and questions over 
accuracy remain
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Current Status & Future Trends

The Future of CFD (?)
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CFD has been on a plateau for the past 15 years

• Representations of current state of the art:
‣ Formula 1 cars
‣ Complete aircrafts

• The majority of current CFD methods are not adequate for vortex 
dominated and transitional flows:

‣ Rotorcraft
‣ High-lift systems
‣ Formation flying
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Current Status & Future Trends

Large-Eddy Simulation
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Rapid advances in computer hardware should make LES feasible 
within the foreseeable future for industrial problems at high 
Reynolds numbers. To realize this goal requires

• high-order algorithms for unstructured meshes (complex geometries)

• Sub-Grid Scale models applicable to wall bounded flows

• massively parallel implementation

The number of DoF for an LES of turbulent flow over an airfoil scales as 
Rec1.8 (resp. Rec0.4) if the inner layer is resolved (resp. modeled)

Chapman (1979), AIAA J. 17(12)
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Overview of Numerical Methods

Typical Requirements of CFD
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Traditional numerical schemes for engineering problems 
are too dissipative and do not provide sufficient 

accuracy for LES and DNS 

• Accuracy:      solution must be right

• Small numerical dissipation:  unsteady flow features

• Unstructured grids:    complex geometries

• Numerical flux:     wave propagation problems

• High resolution capabilities:  transitional and turbulent flows

• Efficiency:      code parallelism

• ...
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Cockburn, et al. (1989). J. Comput. Phys., 84(1); Cockburn, Shu (1989). Math. Comput., 52; Cockburn, et al. (1990). Math. 
Comput., 54(190); Cockburn, Shu (1998). J. Comput. Phys., 141; Cockburn, Shu (2001). J. Sci. Comput., 16; Kopriva, Kolias 
(1996). J. Comput. Phys., 125(1); Liu, et al. (2006). J. Comput. Phys., 216(2); Atkins, Shu (1998). AIAA J., 36(5); Hesthaven, 
Warburton, (Springer Verlag, 2007); Huynh, (2007). AIAA P., 2007-4079; Huynh, (2009) AIAA P., 2009-403

Overview of Numerical Methods

A Review of the Literature
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Past Research on DG Schemes:
• Modern development of DG schemes for hyperbolic conservation laws stems 

from the work of Cockburn & Shu [1989a,1989b,1990,1998,2001]

Recent Research:
Attempts to reduce complexity and avoid quadrature:
• Spectral Difference (SD) scheme by Kopriva & Kolias [1996], Liu, Vinokur & 

Wang [2006]
• Nodal Discontinuous Galerkin (NDG) scheme by Atkins & Shu [1998], 

Hesthaven & Warburton [2007]
• Flux Reconstruction (FR) scheme by Huynh [2007,2009]
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Main Similarities Between Schemes:
• Local discretization with element-wise polynomials
• Inter-element communication achieved through Riemann solver across interfaces

Overview of Numerical Methods

DG, NDG, SD, FR

31

Main Differences Between Schemes:
• Discontinuous Galerkin: weak formulation requires the use of high-order quadrature 

rules to find flux discretization
• Nodal DG: discretizes flux in the same way solution is discretized: element-wise 

polynomials. Flux and solution points are coincident and located at the Gauss-Lobatto 
points

• Spectral Difference: uses differential formulation. Flux is discretized with element-wise 
polynomials one order higher than those used to discretize the solution. Solution and 
flux points are collocated.

• Flux Reconstruction: uses differential formulation. Flux and solution discretized with 
element-wise polynomials of the same order. Correction functions correct the flux and 
are polynomials of one order higher. Flux and solution points are coincident. Recovers 
previous schemes, hence facilitating analysis and comparison.
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The FR Methodology

Linear Energy Stability
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• Energy stability analysis versus Fourier stability analysis

‣ Energy method is more general and rigorous

‣ Energy method enables stability proofs for all orders of accuracy

‣ Energy method applies to non-uniform meshes

‣ Fourier analysis provides more detailed information about the distribution 
of dispersive and diffusive errors

‣ Fourier analysis identifies super accuracy for linear problems

• There exists a family of Flux Reconstruction schemes that are 
guaranteed to be linearly stable

‣ Parameterized with a constant c 

‣ Recover NDG, SD, plus other previously-found energy-stable FR schemes

‣ c changes the scheme, hence dispersion and dissipation properties too
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The FR Methodology

Optimal Flux Reconstruction (OFR)
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Effective wavenumber

Imaginary part of numerical 
wavespeed

OESFR - optimized by varying c
OFR - optimized by modifying 
zeros of correction function

Asthana et al. (2014). J. Comput. Phys.
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The FR Methodology

Optimal Flux Reconstruction (OFR)
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Advection of a Gaussian 
bump, P = 5
- DG, OESFR: 61 elements
- OFR: 45 elements
- c+: 76 elements

OESFR - optimized by varying c
OFR - optimized by modifying 
zeros of correction function

Asthana et al. (2014). J. Comput. Phys.
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The FR Methodology

Shock Detection with the Concentration Method
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Based on concentration 
method by Gelb, Gates, 
and Tadmore. Adapted 
to polynomials by 
Sheshadri.
Steps:
1. Find polynomial 
modal decomposition 
(coefficients of Jacobi 
or Chebyshev bases)
2. “Enhance” 
decomposition via 
convolution with Kernel
3. If magnitude of 
coefficients is above a 
selected threshold, a 
discontinuity is present 

Sheshadri, (2014) AIAA P., 2014-2688
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The FR Methodology

Filtering for non-linear stabilization
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Dissipation can 
stabilize FR 
schemes. 
Filtering can be 
posed as 
dissipation.

Local Fourier-
Spectral (LFS) 
filters developed 
by Asthana et 
al. perform 
exact 
convolution 
locally and take 
neighboring 
information into 
account.

Asthana et al., (2014) submitted to JCP

Burgers Equation, N = 3, P = 119 Shu-Osher shock-turbulence interaction, N = 56, P = 8

Double Mach reflection, N = 56x224, P = 8
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SD scheme, N=4

Iso-Q colored by Ma

Castonguay, et al. (2010). AIAA P., 2010-4626; Radespiel, et al. (2007). AIAA J., 45(6); Ol, et al. (2005). AIAA P., 2005-5149; 
Galbraith, Visbal (2008). AIAA P., 2008-225; Uranga, et al. (2009). AIAA P., 2009-4131; 

Applications

Transitional Flow over SD7003 Airfoil

39

Re=6×104, AoA=4°, 2.2×107 DoF

Freestream 
Turbulence

Separation
xsep/c

Transition
xtr/c

Reattach.
xr/c

Radespiel
et al.

Ol et al.

Galbraith
Visbal
Uranga
et al.

Present
ILES*

0.08% 0.30 0.53 0.64

0.10% 0.18 0.47 0.58

0% 0.23 0.55 0.65

0% 0.23 0.51 0.60

0% 0.23 0.53 0.64

Experiments in green

*1.7×106 DoF
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SD, 2D, N=5 on deforming grid

Jones, et al. (1998). AIAA J., 36(7)

Applications

Study of Flapping Wing Sections
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NACA0012, Re=1850, Ma=0.2,
St=1.5, ω=2.46, h=0.12c

Experiment (Jones, et al.)
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Iso-Entropy colored by Ma

Ou, et al. (2011). AIAA P., 2011-1316; Ou, Jameson (2011). AIAA P., 2011-3068

Applications

Flapping Wing Aerodynamics
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Iso-Entropy colored by Ma

Flapping NACA0012, Re=2000,
SD N=5, 4.7×106 DoF

Wing-Body, Re=5000,
SD N=4, 2.1×107 DoF
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Iso-Vorticity colored by Mach

Ou, et al. (2011). AIAA P., 2011-3668

Applications

Flow Over Spheres

42

Mach contours + streamlines

Flow over a spinning sphere, 
Re=300, Ma=0.2

Flow over a sphere, 
Re=10000, Ma=0.2
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LES Computations
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Taylor Green Vortex: ReD = 21400

Iso-Q colored by velocity magnitude

Energy spectra for different FR-
derived schemes, compared to a 
spectral method on a 5123 grid, 
at t = 9 sec

Dissipation rate over time of FR-
derived SD scheme compared to a 
13-point Dispersion-Relation-
Preserving (DRP) Finite 
Difference scheme on a 5123 grid. 
The number of degrees of 
freedom remain constant in the 
different schemes. 8th order 
scheme becomes unstable because 
of aliasing.
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LES Computations
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Flow past a Square Cylinder: ReD = 21400
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Summary and Conclusions
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• The early development of CFD in the Aerospace Industry was primarily driven by the 
need to calculate steady transonic flows: this problem is quite well solved 

• CFD has been on a plateau for the last 15 years with 2nd-order accurate FV methods for 
the RANS equations almost universally used in both commercial and government codes 
which can treat complex configurations. These methods cannot reliably predict complex 
separated, unsteady and vortex dominated flows

• Ongoing advances in both numerical algorithms and computer hardware and software 
should enable an advance to LES for industrial applications within the foreseeable future

• Research should focus on high-order methods with minimal numerical dissipation for 
unstructured meshes to enable the treatment of complex configurations

Predicting the future is generally ill advised.
However, the following are the author’s opinions:
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Summary and Conclusions

48

• slow convergence for steady state problems - this might be alleviated by a better design 
of a multi-hp convergence acceleration scheme

• the need for a more efficient implicit time stepping scheme for unsteady problems

• more robust high-order schemes for nonlinear problems such as are encountered in high 
speed gas dynamics

• more efficient and user friendly mesh generation techniques

Current obstacles to the wider adoption of high-order methods which call for 
further research include:
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Summary and Conclusions
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• the need for wall models to enable simulations of wall bounded flows at affordable 
computational costs

• the need for further research on subgrid filtering techniques on unstructured meshes

• the need for continuing research on subgrid models, including approximate deconvolution 
and exact SGS models, and a careful evaluation of implicit LES methods

Current issues in LES include:

Automatic shape design methods based on control theory or other optimization 
methods will be increasingly used in aerospace design

Design problems in unsteady flow, such as turbomachinery, rotorcraft, or unsteady 
separated flows are particularly challenging
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Summary and Conclusions
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Eventually DNS may become feasible for high Reynolds number flows

hopefully with a smaller power requirement than a wind tunnel 
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Questions & Anwers
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Thank you for listening


